Hitchens’s Razor 2.0

To the Chief Musician. Set to “Mahalath.” A Contemplation of David. The fool has said in his heart, “There is no God.” They are corrupt, and have done abominable iniquity; There is none who does good.

(Psalms 53:1) NKJV

Rather than demonstrating that “science” is based on evidence whereas faith isn’t, Christopher Hitchens showed, ironically, that he didn’t understand what evidence is or how it’s used.

Continue reading “Hitchens’s Razor 2.0”

The Imaginations of Their Evil Heart

Yet they obeyed not, nor inclined their ear, but walked every one in the imagination of their evil heart: therefore I will bring upon them all the words of this covenant, which I commanded them to do; but they did them not.

(Jeremiah 11:8) KJV

Popular science (SciPop) is an inductive rationalization of the premise that the universe has no divine or supernatural cause. It’s an outgrowth of our corrupt nature and embodies our desire to be free from the judgement of God.

Continue reading “The Imaginations of Their Evil Heart”

What is Life?

And God said, Let the waters bring forth abundantly the moving creature that hath life, and fowl that may fly above the earth in the open firmament of heaven.

(Genesis 1:20-23) KJV

The biological definition of life and what the Bible describes as living aren’t the same thing. This is important to know as we see how the process of creation unfolded. Biology is the foundation of secular humanism.

Read more…

Math = Faith

And when they shall say unto you, Seek unto them that have familiar spirits, and unto wizards that peep, and that mutter: should not a people seek unto their God? for the living to the dead? To the law and to the testimony: if they speak not according to this word, it is because there is no light in them.

(Isaiah 8:19-20) KJV

Faith is believing in something that you can’t see. Math requires believing in concepts that you can’t see and relating them to each other in ways that can’t be seen. Math is the language of faith.

Read more…

Thoughts And Intents

For the word of God is quick, and powerful, and sharper than any twoedged sword, piercing even to the dividing asunder of soul and spirit, and of the joints and marrow, and is a discerner of the thoughts and intents of the heart.

(Hebrews 4:12) KJV

If all of our impurity and corruption are in our heart, and gravity was created to attract all of the impurity and corruption of creation, is the heart a created instance of gravity? Logic says yes.

Locating The Soul

And thou shalt love the Lord thy God with all thy heart, and with all thy soul, and with all thy mind, and with all thy strength: this is the first commandment. And the second is like, namely this, Thou shalt love thy neighbour as thyself. There is none other commandment greater than these.

(Mark 12:3) KJV

The soul as our personality and self-awareness has the attributes of heart, soul and mind. Can we examine these attributes and get a better understanding of what the soul is and where it is located?

Chapter 8

Carlton’s computer systems were a remarkable feat of theoretical pioneering.  The engineering was fairly simple, and the raw computing power was not great, but that was not the point.  In a similar way to how fine art has an intrinsic value to culture and society, even though it may be just a few bits of wood, canvas and paint, Carlton’s computers were revolutionary.  The fundamental basis was an idea that Carlton had in High School.  There had been a big push back then to develop energy-efficient technology.  There was a well sponsored National competition for clever inventions that Carlton decided to win.  Carlton’s idea was to generate electrical power at the place where it was needed, rather than storing it elsewhere and using wires and connectors to transport it.

The human body, Carlton theorized, is powered by changes in electrical potential as electrons move across cell membranes.  The energy to do this comes from biochemical reactions in the cells.  This is called respiration.  Power is not transported to the cells like electricity is, but fuel, from metabolizing food, is taken there in the blood.  Each cell converts the fuel into the energy needed to power all of the cellular processes.  Blood transports everything necessary for metabolism to each cell, and it takes the waste products away.  Carlton figured on making a computer that operated in a similar way.

Carlton wanted to generate the computer processor’s electrical power right at the processor.  The processor would need to be small and have low power usage, but if hundreds, maybe thousands, of these processors were linked together the computer should be fast enough.  Most importantly it would not need a source of electricity.

The idea was simple enough but it turned out to be a practical nightmare.  As Carlton thought and designed he built small replicas of human organs.  A pump to circulate oxygenated solution was the heart.  An aerator to add oxygen and remove carbon dioxide was the lung.  A filter to remove waste products from the solution was the kidney.  The solution in the machine was the blood.  To keep it simple Carlton used real blood, his own. Each of these components also needed power, and so his problem was not only to make a system that could power its processor, but could produce enough surplus electrical current to run the other peripherals necessary to the system.

One of the early challenges was how to develop a membrane that was big enough to be useful, but that would be able to perform in the same way that a human cell membrane does. His first experiments involved using the papery layer of skin that is found in between the layers of an onion. This is just one cell thick but it can be peeled off if you are careful. He was very careful, and his success at generating a measurable electrical current by filling onion skin membrane with his blood was all he needed to develop a full fledged obsession.

His work after that introduced him into the medical field and the world of cosmetic surgery, where researchers were growing human skin from stem cells for use in re-constructive surgery. He convinced his parents to fund his project and custom ordered a sheet of artificially grown human skin that was one cell thick, and big enough to cover a twenty inch computer screen. It died, but not before he demonstrated the validity of his idea, prompting a new burst of investigation into a cellular substrate that was not living tissue. This he eventually found in a lab in Geneva, Switzerland, who had stumbled upon the invention by chance while developing a lining for the inner wall of the Superconducting Supercollider at CERN. Now he had a cellular substrate that was the equivalent to one cell thick, was made of cell-sized miniature compartments and was porous. It was ceramic and very durable. It worked perfectly, and he began generating the electrical current he needed. The next challenge became finding a processor that would work in the system.